Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2308802, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878366

RESUMO

Single-crystal graphene (SCG) wafers are needed to enable mass-electronics and optoelectronics owing to their excellent properties and compatibility with silicon-based technology. Controlled synthesis of high-quality SCG wafers can be done exploiting single-crystal Cu(111) substrates as epitaxial growth substrates recently. However, current Cu(111) films prepared by magnetron sputtering on single-crystal sapphire wafers still suffer from in-plane twin boundaries, which degrade the SCG chemical vapor deposition. Here, it is shown how to eliminate twin boundaries on Cu and achieve 4 in. Cu(111) wafers with ≈95% crystallinity. The introduction of a temperature gradient on Cu films with designed texture during annealing drives abnormal grain growth across the whole Cu wafer. In-plane twin boundaries are eliminated via migration of out-of-plane grain boundaries. SCG wafers grown on the resulting single-crystal Cu(111) substrates exhibit improved crystallinity with >97% aligned graphene domains. As-synthesized SCG wafers exhibit an average carrier mobility up to 7284 cm2 V-1 s-1 at room temperature from 103 devices and a uniform sheet resistance with only 5% deviation in 4 in. region.

2.
ACS Photonics ; 10(9): 3171-3180, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37743945

RESUMO

Graphene is a nonlinear material in the terahertz (THz) frequency range, with χ(3) ∼ 10-9 m2/V2 ∼ 15 orders of magnitude higher than that of other materials used in the THz range, such as GaAs or lithium niobate. This nonlinear behavior, combined with ultrafast dynamic for excited carriers, proved to be essential for third harmonic generation in the sub-THz and low (<2.5 THz) THz range, using moderate (60 kV/cm) fields and at room temperature. Here, we show that, for monochromatic high peak power (1.8 W) input THz signals, emitted by a quantum cascade laser, the nonlinearity can be controlled using an ionic liquid gate that tunes the graphene Fermi energy up to >1.2 eV. Pump and probe experiments reveal an intense absorption nonlinearity at 3.2 THz, with a dominant 3rd-order contribution at EF > 0.7 eV, hence opening intriguing perspectives per engineering novel architectures for light generation at frequencies > 9 THz.

3.
Adv Mater ; 35(44): e2302045, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37441751

RESUMO

Polaritons in layered materials (LMs) are a promising platform to manipulate and control light at the nanometer scale. Thus, the observation of polaritons in wafer-scale LMs is critically important for the development of industrially relevant nanophotonics and optoelectronics applications. In this work, phonon polaritons (PhPs) in wafer-scale multilayer hexagonal boron nitride (hBN) grown by chemical vapor deposition are reported. By infrared nanoimaging, the PhPs are visualized, and PhP lifetimes of ≈0.6 ps are measured, comparable to that of micromechanically exfoliated multilayer hBN. Further, PhP nanoresonators are demonstrated. Their quality factors of ≈50 are about 0.7 times that of state-of-the-art devices based on exfoliated hBN. These results can enable PhP-based surface-enhanced infrared spectroscopy (e.g., for gas sensing) and infrared photodetector applications.

4.
ACS Nano ; 15(11): 17966-17976, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34706194

RESUMO

The scalable synthesis and transfer of large-area graphene underpins the development of nanoscale photonic devices ideal for new applications in a variety of fields, ranging from biotechnology, to wearable sensors for healthcare and motion detection, to quantum transport, communications, and metrology. We report room-temperature zero-bias thermoelectric photodetectors, based on single- and polycrystal graphene grown by chemical vapor deposition (CVD), tunable over the whole terahertz range (0.1-10 THz) by selecting the resonance of an on-chip patterned nanoantenna. Efficient light detection with noise equivalent powers <1 nWHz-1/2 and response time ∼5 ns at room temperature are demonstrated. This combination of specifications is orders of magnitude better than any previous CVD graphene photoreceiver operating in the sub-THz and THz range. These state-of-the-art performances and the possibility of upscaling to multipixel architectures on complementary metal-oxide-semiconductor platforms are the starting points for the realization of cost-effective THz cameras in a frequency range still not covered by commercially available microbolometer arrays.

5.
ACS Nano ; 13(3): 3023-3030, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30768896

RESUMO

Large-area, ultrathin flexible tactile sensors with conformal adherence are becoming crucial for advances in wearable electronics, electronic skins and biorobotics. However, normal passive tactile sensors suffer from high crosstalk, resulting in inaccurate sensing, which consequently limits their use in such advanced applications. Active-matrix-driven tactile sensors could potentially overcome such hurdles, but it demands the high performance and reliable operations of the thin-film-transistor array that could efficiently control integrated pressure gauges. Herein, we utilized the benefit of the semiconducting and mechanical excellence of MoS2 and placed it between high- k Al2O3 dielectric sandwich layers to achieve the high and reliable performance of MoS2-based back-plane circuitry and strain sensor. This strategical combination reduces the fabrication complexity and enables the demonstration of an all MoS2-based large area (8 × 8 array) active-matrix tactile sensor offering a wide sensing range (1-120 kPa), sensitivity value (Δ R/ R0: 0.011 kPa-1), and a response time (180 ms) with excellent linearity. In addition, it showed potential in sensing multitouch accurately, tracking a stylus trajectory, and detecting the shape of an external object by grasping it using the palm of the human hand.


Assuntos
Dissulfetos/química , Molibdênio/química , Testes Cutâneos , Pele/química , Tato , Dissulfetos/síntese química , Equipamentos e Provisões Elétricas , Eletrodos , Humanos , Semicondutores , Sensibilidade e Especificidade , Propriedades de Superfície
6.
Nanoscale ; 10(46): 21978-21984, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30451270

RESUMO

Molybdenum ditellurides (MoTe2) have recently attracted attention owing to their excellent structurally tunable nature between 1T'(metallic)- and 2H(semiconducting)-phases; thus, the controllable fabrication and critical identification of MoTe2 are highly desired. Here, we semi-controllably synthesized 1T'- and 2H-MoTe2 crystals using the atmospheric pressure chemical vapor deposition (APCVD) technique and studied their grain-orientation dependency using polarization-sensitive optical microscopy, Raman scattering, and second-harmonic generation (SHG) microspectroscopy. The polycrystalline 1T'-MoTe2 phase with quasi-1D "Mo-Mo" zigzag chains showed anisotropic optical absorption, leading to a clear visualization of the lattice domains. On the other hand, 2H-MoTe2 lattice grains did not exhibit any discernible difference under polarized light illumination. The combined aforementioned microscopy techniques could be used as an easy-to-access and non-destructive tool for a quick and solid identification of intended lattice orientation development in industry-scale MoTe2 crystal manufacturing.

7.
Nat Commun ; 9(1): 1417, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650957

RESUMO

Efficient and highly functional three-dimensional systems that are ubiquitous in biology suggest that similar design architectures could be useful in electronic and optoelectronic technologies, extending their levels of functionality beyond those achievable with traditional, planar two-dimensional platforms. Complex three-dimensional structures inspired by origami, kirigami have promise as routes for two-dimensional to three-dimensional transformation, but current examples lack the necessary combination of functional materials, mechanics designs, system-level architectures, and integration capabilities for practical devices with unique operational features. Here, we show that two-dimensional semiconductor/semi-metal materials can play critical roles in this context, through demonstrations of complex, mechanically assembled three-dimensional systems for light-imaging capabilities that can encompass measurements of the direction, intensity and angular divergence properties of incident light. Specifically, the mechanics of graphene and MoS2, together with strategically configured supporting polymer films, can yield arrays of photodetectors in distinct, engineered three-dimensional geometries, including octagonal prisms, octagonal prismoids, and hemispherical domes.

8.
Nat Commun ; 9(1): 1690, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703901

RESUMO

Transient electronics represents an emerging technology whose defining feature is an ability to dissolve, disintegrate or otherwise physically disappear in a controlled manner. Envisioned applications include resorbable/degradable biomedical implants, hardware-secure memory devices, and zero-impact environmental sensors. 2D materials may have essential roles in these systems due to their unique mechanical, thermal, electrical, and optical properties. Here, we study the bioabsorption of CVD-grown monolayer MoS2, including long-term cytotoxicity and immunological biocompatibility evaluations in biofluids and tissues of live animal models. The results show that MoS2 undergoes hydrolysis slowly in aqueous solutions without adverse biological effects. We also present a class of MoS2-based bioabsorbable and multi-functional sensor for intracranial monitoring of pressure, temperature, strain, and motion in animal models. Such technology offers specific, clinically relevant roles in diagnostic/therapeutic functions during recovery from traumatic brain injury. Our findings support the broader use of 2D materials in transient electronics and qualitatively expand the design options in other areas.


Assuntos
Materiais Biocompatíveis/química , Técnicas Biossensoriais , Dissulfetos/química , Eletrodos Implantados , Molibdênio/química , Monitorização Fisiológica/instrumentação , Implantes Absorvíveis , Animais , Encéfalo/fisiologia , Linhagem Celular , Feminino , Fibroblastos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Monitorização Fisiológica/métodos , Ratos , Ratos Endogâmicos Lew , Temperatura
9.
Adv Mater ; 30(14): e1705190, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29436068

RESUMO

Understanding the collaborative behaviors of the excitons and phonons that result from light-matter interactions is important for interpreting and optimizing the underlying fundamental physics at work in devices made from atomically thin materials. In this study, the generation of exciton-coupled phonon vibration from molybdenum disulfide (MoS2 ) nanosheets in a pre-excitonic resonance condition is reported. A strong rise-to-decay profile for the transient second-harmonic generation (TSHG) of the probe pulse is achieved by applying substantial (20%) beam polarization normal to the nanosheet plane, and tuning the wavelength of the pump beam to the absorption of the A-exciton. The time-dependent TSHG signals clearly exhibit acoustic phonon generation at vibration modes below 10 cm-1 (close to the Γ point) after the photoinduced energy is transferred from exciton to phonon in a nonradiative fashion. Interestingly, by observing the TSHG signal oscillation period from MoS2 samples of varying thicknesses, the speed of the supersonic waves generated in the out-of-plane direction (Mach 8.6) is generated. Additionally, TSHG microscopy reveals critical information about the phase and amplitude of the acoustic phonons from different edge chiralities (armchair and zigzag) of the MoS2 monolayers. This suggests that the technique could be used more broadly to study ultrafast physics and chemistry in low-dimensional materials and their hybrids with ultrahigh fidelity.

10.
Nanotechnology ; 27(36): 365602, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27479000

RESUMO

The synthesis of various nitrogen-doped (N-doped) carbon nanostructures has been significantly explored as an alternative material for energy storage and metal-free catalytic applications. Here, we reveal a direct growth technique of N-doped carbon nanofibers (CNFs) on flexible nichrome (NiCr) foil using melamine as a solid precursor. Highly reactive Cr plays a critical role in the nanofiber growth process on the metal alloy foil in an atmospheric pressure chemical vapor deposition (APCVD) process. Oxidation of Cr occurs in the presence of oxygen impurities, where Ni nanoparticles are formed on the surface and assist the growth of nanofibers. Energy-dispersive x-ray spectroscopy (EDXS) and x-ray photoelectron spectroscopy (XPS) clearly show the transformation process of the NiCr foil surface with annealing in the presence of oxygen impurities. The structural change of NiCr foil assists one-dimensional (1D) CNF growth, rather than the lateral two-dimensional (2D) growth. The incorporation of distinctive graphitic and pyridinic nitrogen in the graphene lattice are observed in the synthesized nanofiber, owing to better nitrogen solubility. Our finding shows an effective approach for the synthesis of highly N-doped carbon nanostructures directly on Cr-based metal alloys for various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...